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A B S T R A C T
This research aims to propose an effective model for the detection of defective Printed 
Circuit Boards (PCBs) in the output stage of the Surface-Mount Technology (SMT) line. 
The emphasis is placed on increasing the classification accuracy, reducing the algorithm 
training time, and a further improvement of the final product quality. This approach 
combines a feature extraction technique, the Principal Component Analysis (PCA), and 
a classification algorithm, the Support Vector Machine (SVM), with previously applied 
Automated Optical Inspection (AOI). Different types of SVM algorithms (linear, kernels 
and weighted) were tuned to get the best accuracy of the resulting algorithm for 
separating good-quality and defective products. A novel automated defect detection 
approach for the PCB manufacturing process is proposed. The data from the real PCB 
manufacturing process were used for this experimental study. The resulting PCA-
LWSVM model achieved 100 % accuracy in the PCB defect detection task. This article 
proposes a potentially unique model for accurate defect detection in the PCB industry. 
A combination of PCA and LWSVM methods with AOI technology is an original and 
effective solution. The proposed model can be used in various manufacturing 
companies as a postprocessing step for an SMT line with AOI, either for accurate defect 
detection or for preventing false calls.
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Introduction 

Quality inspection is a crucial stage in the assem-
bling process of PCB manufacturing. It shows whether 
the board works correctly or not. Manual inspection 
of PCBs is laborious, time-consuming and imprecise 

as it is susceptible to human errors. Consequently, it is 
costly and ineffective. Currently, companies for PCB 
manufacturing use automated Surface-Mount Tech-
nology (SMT) lines to ensure better product quality 
and the manufacturing process continuity. The PCB 
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manufacturing of the SMT assembly line goes through 
multiple steps of automatic handling. To ensure good 
quality and reduce the number of defects, advance 
inspection tasks, such as AOI, are becoming more 
popular. These quality inspection tasks are realised at 
different stages of the assembly process. The tradi-
tional defect detection methods have various disad-
vantages for application on big data sets, such as 
strong dependency on a designed template, time con-
sumption, and high computational costs, which can 
be challenging for companies in the production envi-
ronment (Hu & Wang, 2020). AOI placed on an SMT 
line inspects quality assurance of the processed PCB 
and, subsequently, can distinguish the chip assembly 
defects (Kim & Park, 2020). A digital camera and set 
of sensors are used in an AOI system for capturing the 
image and gathering data of each sample PCB product 
for further analysis. Due to the contactless measuring, 
the AOI tool is considered flexible, fast and  
effective compared to the usual electrical test equip-
ment. Despite this, the AOI solution, in some cases, is 
not completely effective in defect detection and tends 
to report false positives. Some authors believe this to 
be caused by the natural limitation of AOI in the 
evaluation of visible defects only. Particularly, all 
observed visual differences are detected as defects, 
even though they can have no consequence on the 
actual functionality of a PCB (Soukup, 2010). Prod-
ucts evaluated by AOI as false-positive need to be 
manually recontroled using the human factor, which 
means additional costs. To make the detection of PCB 
defects more effective, a model should be proposed as 
an AOI postprocessing step to obtain better and more 
accurate results.

Therefore, the aim of this research is so to design 
a data mining model for effective recognition of 
defective and good-quality products. The AOI 
achieves an accuracy of 96.24 %. Therefore, the fol-
lowing research questions are posed: “Is it possible to 
use the SVM method and achieve a more effective 
solution for a quality recognition compared to AOI?”, 
“Which SVM algorithm provides the best effective-
ness?”. 

This paper is organised as follows. Section 1 
introduces the current state of the solved problems 
and discusses various approaches used in PCB defect 
detection. Section 2 presents the used methodologi-
cal approach, the source dataset, and evaluation 
metrics. Section 3 contains experimental results of 
the used individual algorithm settings. Section 4 
compares the used models, discusses the key findings 
and defines the proposed model. 

1. Literature review 

Many authors have already examined the PCB 
quality control process, and most current papers focus 
on quality control using image processing. Most 
recently, Kumar, Shreekanth and Prajwal (2020) 
examined the effectiveness of different image process-
ing algorithms in combination with the feature extrac-
tion method. Yin et al. (2019) proposed an improved 
local binary fitting level set method to improve the 
accuracy and efficiency of the PCB image segmenta-
tion. An automated defect detection approach for 
increasing the accuracy of the quality control process 
on PCB lines, which applies a SURF-based algorithm 
to AOI images, has been introduced by Hassanin et al. 
(2019). Chavan et al. (2016) proposed an innovative 
system based on image processing that combines vari-
ous algorithms, such as Fault Detection Algorithm, 
Canny Edge Detection Algorithm and Contour Anal-
ysis. Wang, Zhao and Wen (2016) focused on detect-
ing the PCB soldered dot using the image processing 
method. Kim and Park (2020) extracted two solder 
regions from a PCB image and then used a dual-
stream CNN for defect classification. The proposed 
solution proves a higher performance and lower 
weight than can be obtained by conventional methods. 
The proposed method also improved the F1-score, 
reduced weight, and accelerated inference time com-
pared to a single stream CNN. Hu and Wang (2020) 
introduced a deep learning PCB image detection 
approach, which builds a new network based on Faster 
RCNN. They also used the ResNet50 method together 
with Feature Pyramid Networks as the pillar for fea-
ture extraction, aiming for the effective detection of 
small defects on the PCB. 

Zakaria et al. (2020) examined whether the 
machine learning approaches can significantly con-
tribute to better PCB fault detection in the assembly 
line. They presented several different attitudes to PCB 
defect detection using various machine learning 
methods. This review showed that methods, such as 
random forests, neural networks, or probabilistic 
approaches, had been applied for PCB defect detec-
tion with the use of an AOI. But in the end, they 
concluded that the use of machine learning methods 
in PCB defect detection is rather minuscule. Reshadat 
and Kapteijns (2021) examined and compared differ-
ent machine learning models applied to the output 
dataset from the AOI. They found that the K-Nearest 
Neighbors method achieved the best results for their 
case.



Volume 14 • Issue 2 • 2022

15

Engineering Management in Production and Services

This research aims to propose an AOI process for 
better detection of low-quality PCBs. Defect detec-
tion is considered one of the essential requirements 
for quality control in PCB production. The independ-
ent AOI is inclined to often make false calls when the 
AOI evaluates the product as defective, but after  
a manual check, the product is reassessed as good 
quality. These false calls become expensive for the 
company when they are more frequent than correctly 
detected defective products. The AOI on the SMT 
line at the company that cooperated with this study 
realises almost 4 % of false calls, which is considered 
a high rate. The research authors aimed to find a solu-
tion or propose a model for the higher accuracy of 
defect detection. Based on the previous literature 
review (Bartova, Bina & Vachova, 2022), the chosen 
method for this classification task was the support 
vector machine (SVM). SVMs are currently a hot 
topic in the machine learning community, creating  
a similar enthusiasm now as previously encountered 
by Artificial Neural Networks. Far from being a pana-
cea, SVMs yet represent a powerful technique with an 
intuitive model representation not only for outlier 
detection but for classification and regression in gen-
eral (Meyer, 2020). In recent years, the SVM method 
has received considerable attention because of its 
superior performance in pattern recognition and 
regression (Cortes & Vapnik, 1995; Bores et al., 1995; 
Vapnik, 1995; Vapnik, 1997; Burges, 1998; Vapnik, 
1999). The SVM method is useful for tasks such as 
defect detection and classification in manufacturing. 
Isa, Rajkumar, and Woo (2007) proposed a model 
which combines Discrete Wavelet Transform and 
Support Vector Machine for sensor data processing 
and further oil and gas pipeline defect classification. 
Ghosh et al. (2010) investigated the SVM perfor-
mance of pattern classification of defects from images. 
They proposed an SVM-based multi-class model for 
defect pattern recognition and inspection of com-
monly occurring fabric defects. Most recently, Mah-
fuz et al. (2020) explored the SVM model for feature 
selection to increase accuracy and reduce the false-
positive rate in defect detection. 

Compared to other machine learning algorithms, 
SVM appears to be a suitable candidate for several 
reasons: high accuracy achieved in similar classifica-
tion tasks, generalisation ability without source data 
limit preconditions, fast learning and evaluation, and, 
last but not least, its flexibility (Zhang et al., 2005, 
Zhang & Zhang, 2001). To improve the accuracy of 
the SVM method, some methods for data preprocess-
ing can be used. To deal with the data complexity and 

diversity, Sun et al. (2013) used PCA and particle 
swarm optimisation (PSO) together with SVM within 
the analogue circuit fault diagnosis task. They applied 
PCA and data normalisation as preprocessing steps, 
then SVM for diagnosis itself, and PSO was finally 
used to optimise the penalty and the kernel parame-
ters of SVM.

2. Research methods

The dataset used for this empirical study comes 
from the AOI system developed by Saki Corporation, 
whose four digital multifrequency projectors provide 
accurate 3D measurements for high-quality images. 
Based on these images, AOI evaluates the quality of 
the product and categorises it as either good-quality 
or defective. The defective products are then manu-
ally checked by a manufacturer and categorised as 
either defective or falsely categorised as such. The 
source dataset has 63093 products in total (0.22 % 
defects, 3.76 % false calls and 96.02 % quality prod-
ucts). Since the number of false calls is rather high in 
comparison with defective products, this study 
focused on the improvement of the quality evaluation 
process. 

Based on a previously developed PRISMA-based 
systematic review (Bartova, Bina & Vachova, 2022), 
the method Support Vector Machine (SVM) was 
chosen for further research on effective defect detec-
tion. The PCA method for feature extraction was 
used as a preprocessing step. Based on Mujica et al. 
(2008), the methods for the dimensionality reduction 
of a data set are especially beneficial for working with 
high volume data.

This research is based on a combination of these 
two methods into one algorithm sequence. The 
research authors aimed to find the most effective type 
of the SVM algorithm and rate the effectiveness and 
accuracy of the proposed models.

2.1.  Data set description

This study used a data file from the AOI line from 
an unnamed company, where the fitting of PCBs is 
automated on the SMT line. At the end of the assem-
bling process, a control process was performed using 
the AOI technology. The data set had 63 396 products 
and 217 variables. The distribution of the products 
can be found in Table 1. For the model, the “false 
calls” products were reclassified as “pass” since they 
were good quality but misclassified by the AOI.
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Tab. 1. Source dataset distribution

PASS FAIL FALSE 
CALL

Products count 60582 165 2649

Percentage 2.56 % 2.26 % 2.18 %

2.2.  Data preprocessing

Classification problems in quality assurance were 
characterised, for example, by many contributing 
features, considering the training set size or the 
imbalanced distribution of the dependent variable 
(Rokach & Maimon, 2006). The authors of this study 
faced analogical problems in their source dataset. For 
this reason, it was necessary to preprocess the data for 
better handling in the experimental phase of the 
research. The first step was to delete variables for 
which most of the data were missing. It was found 
that 148 variables did not contain values for more 
than 60 000 products; therefore, they were removed 
from the data file. Once constant and unimportant 
variables were removed from the remaining group of 
68, only 25 variables were left. Then, the missing val-
ues were imputed by the predictive mean matching 
method. However, the dimensionality in the data set 
was still relatively high; consequently, the PCA analy-
sis was used for feature extraction.
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𝐶𝐶𝐶𝐶2 =
1
𝑀𝑀𝑀𝑀2

 (4) 

 

(1)

2.3.  Model’s evaluation

The most critical factor was the accuracy of the 
model since the research aimed to correct the classifi-
cation of as many products as possible. The accuracy 
of different types of used SVM models was tested 
using the confusion matrix (Table 2).

Tab. 3. Accuracy measurements

Measure Derivations Index description

Recall TPR=TP/(TP+FN) How many items of the “not passed QA” class are correctly recognised

Precision PPV=TP/(TP+FP) How many items classified as “not passed QA” are true “not passed QA”

Specificity SPC=TN/(FP+TN)
Expresses the proportion of products whose test is negative (quality products) 
among all those that actually have no defect

Negative 
Predictive Value

NPV=TN/(TN+FN)
The probability that following a negative test result, an individual product will truly 
have no defect

False Positive 
Rate

FPR=FP/(FP+TN)
The probability that a false call will occur and a positive result will be given when 
the true value is negative

False Discovery 
Rate

FDR=FP/(FP+TP) The expected rate of Type I errors: the result is a false-positive

False Negative 
Rate

FNR=FN/(FN+TN) The probability that a true-positive item will be missed by the test

The accuracy measure commonly employed for 
classifier performance evaluation is defined by Eq. 
(1).

Nevertheless, with many present negative occur-
rences (in this case, good-quality products), it is use-
ful to measure the performance by ignoring the 
correctly predicted negative items. In this case, well-
known performance measures, such as precision (P), 
recall (R), or other factors, can be used (Rokach  
& Maimon, 2006). Several measures were used for the 
evaluation of models within this research.

 

Confusion matrix
Actual class

Positive Negative

Prediction
Positive TP  

(true positive)
FP 

(false positive)

Negative FN  
(false negative)

TN  
(true negative)

Tab. 2. Confusion matrix

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/type-i-error-type-ii-error-decision/
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The calculation formulas of these factors are 
presented in Table 3. The currently used AOI solution 
shows too many false calls, so the False Discovery 
Rate is high (4.18 %). This research aimed to create  
a model decreasing the value of this factor.

It also evaluated two more factors: the number of 
vectors needed for accurate model creation and the 
time for model counting. According to Tseng et al. 
(2015), a lower number of support vectors needed 
signifies the robustness of the classifier. This study 
assumed that the lower number of vectors was better. 
This also correlated with the duration of the algorithm 
execution.

2.4.  Feature extraction phase

In machine learning tasks, each additional fea-
ture in the dataset exponentially increases the 
requirement of data points to train the model. The 
learning algorithm needs an enormous amount of 
data to search for the right model in the higher 
dimensional space. Therefore, this study used the 
PCA analysis for the reduction of variables in the 
data. This caused the data transformation into fewer 
dimensions and acted as the summaries of the fea-
tures.

PCA reduces data by their geometrical projection 
into lower dimensions, and there arise the so-called 

principal components (PCs). The goal is to find the 
best summary of the data using a minimum number 
of uncorrelated PCs. The first PC minimises the total 
distance between the data and their projection onto 
the PC, in other words, the first PC explains the larg-
est variability portion of the original data (Kakkar  
& Narag, 2007). 

The eigenvalue variance was used to extract the 
number of PCs for this study. The analysis also  
provided the proportion of total variance in all vari-
ables accounted for each factor. It is evident from the 
data that the eigenvalues descended rapidly from the 
first value. The first component accounted for 
approximately 19 % of the variance of the original 25 
factors, but subsequent components accounted for 
much less.

Thus, using the eigenvalue selection for this 
study, it can be assumed that only five factors were 
retained as PCs across all categories and questions. 
These PCs cumulatively accounted for approx. 65 % 
of the total variance. This is visible on the scree plot 
(Fig. 1). 

It can be observed that the first five principal 
components can represent more than 60 % of the 
information stored in 25 used variables. The incre-
ment of the next variables is exceptionally low com-
pared to them, so for further research, this study used 
only five variables (PC1-PC5).

 

Fig. 1. PCA contribution — the scree plot 
 

 

Fig. 2. Comparison of the weighted models’ accuracy  
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2.5. Support Vector Machine

Since SVM details are fully described in articles 
(Vapnik, 1998; Cristianini & Shawe-Taylor, 2000), 
this article offers a brief introduction to their funda-
mental principle. An SVM looks for the optimal 
hyperplane separating the two classes. The algorithm 
finds the optimal hyperplane by maximising the 
margin between the closest points of the two classes. 
For better work, mainly with non-linear data, kernel 
functions can be used. This research addresses the 
binary optimisation problem using a linear model, 
various kernels and weighted SVM models. Choosing 
different kernel functions produces various SVMs 
and may result in different performances (Burges, 
1998; Aronszajn, 1950; Shawe-Taylor et al., 1998). 
Some work has already been done on limiting kernels 
using prior knowledge, but the best choice of a kernel 
for a given problem is still an open research issue 
(Williamson, Smola & Schölkopf, 1999; Chapelle  
& Schölkopf, 2002).

For SVM analysis, the data set was randomly 
divided into a training set (75 %) and a testing set (25 
%). First, the model was tuned using the training data 
set; then, the created model was applied to the testing 
data set, and finally, the accuracy of the proposed 
model was evaluated. Different SVM algorithms were 
used for the prediction of defective products to 
achieve the best-fitted model.

3. Research results

At this stage of experiments, the research authors 
investigated the SVM models and their parameters 
for the successful detection of the defective products 
with the highest accuracy possible to find the most 
suitable model. Except for the linear SVM and differ-
ent types of kernels, they also examined the weighted 
models. 

For the use of the linear model and various ker-
nels, different parameters were tuned, such as cost, 
gamma, and degree. The linear model had only one 
regularisation parameter C (cost). Parameter C con-
trols the collation between variable misclassifications 
penalty and the margin width. A small value of the 
parameter C makes the constraints easy to ignore. 
This leads to a large margin. On the other hand,  
a large C value complicates the constraints disregard, 
which leads to a small margin. This parameter is also 
valid for all other models. For the purpose of finding 
the best model, the research authors tuned parameter 

C interval <0.01;100>. Unfortunately, the changing of 
the cost parameter did not influence the result accu-
racy at all. 

When the data are not linearly separable, the 
various kernel functions can be used. The kernel 
functions are one of the important tricks of SVM.  
A kernel is a method of placing a two-dimensional 
plane so that it is curved in the higher-dimensional 
space (Boser, Guyon & Vapnik, 1992). There are sev-
eral possibilities for the choice of this kernel function, 
including polynomial, sigmoid or radial basis (RBF). 
Additional parameter-slope gamma can be set for 
kernel models. Gamma is a hyperparameter that 
decides how much curvature we want in a decision 
boundary. When the parameter gamma is increased, 
then the decision boundary gets more curvature. 
First, the polynomial kernel was tried, which is a non-
stationary kernel. 

A kernel function represents the vectors’ similar-
ity in a feature space over polynomials of the original 
variables, allowing learning of non-linear models. In 
the case of the polynomial kernel, the value of cost 
and also the degree parameter of the SVC class need 
to be filled. However, the accuracy of the polynomial 
model does not reflect the changes in the used 
parameters. The best-achieved accuracy by the kernel 
polynomial function is 0.9979712 (99.8 %), which is 
the same as from the linear model. The next model, 
RBF (Gaussian) kernel, comes from a family of ker-
nels where a distance measure is smoothed by an 
exponential function (Suo et al., 2008). RBF is the 
most used type of kernel function, mainly because it 
has a localised and finite response along the entire 
x-axis. Also, all the quality products have been cor-
rectly detected in this model, but all the defective 
products were wrongly assumed as good quality.

The last kernel function in this study was sigmoi-
dal. As can be seen from the results in Table 4, the 
sigmoidal model results reflect the parameter changes 
the most, but on the other hand, the best accuracy is 
not higher than in the previous cases. Also, in the 
case of sigmoid SVM, the best-achieved result was 
99.8 %, but no defective product was detected cor-
rectly.

All tuned models achieved the same result. All of 
the 15 735 quality products were correctly classified 
as good. However, the case was not as good with 
defective products. Out of 38 defects, all were mis-
classified as good-quality products (Table 5). The 
accuracy of the linear SVM was 0.9979712 (99.8 %). 
The model was not sufficient for fulfilling the set goal, 
even though the accuracy was high because no defec-
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Tab. 4. Unweighted models accuracy

# Cost Lin. Gamma Rad. basis Sig. Dg. Polyn.

1 0.001 0.998 0.0001 0.998 0.998 1 0.998

2 0.01 0.998 0.001 0.998 0.998 2 0.998

3 0.1 0.998 0.01 0.998 0.997 3 0.998

4 1 0.998 0.1 0.998 0.997 4 0.998

5 10 0.998 1 0.998 0.996 5 0.998

6 100 0.998 10 0.998 0.996 6 0.998

tive product was correctly detected. For this reason, 
the data was assumed as not linearly separable.

Several models of different kernel functions were 
made, but none of them had sufficient accuracy. For 
this reason, the study continued searching for  
a model with satisfactory accuracy, especially a model 
able to detect defects even at the expense of a false-
positive test of a small number of good-quality prod-
ucts. Based on some authors, weighted SVM (WSVM) 
could perform well in these classification tasks (Ban-
joko et al., 2019; Xanthopoulos & Razzaghi, 2014; 
Yang et al., 2007); therefore, it was used in this study 
as well.

3.1.  Weighted SVM

The basic idea of the Weighted Support Vector 
Machine (WSVM) is assigning a different weight to 
each data point according to its relative importance 
in the class. Then, different data points have different 
contributions to the learning of the decision surface 
(Yang et al., 2007). Using a weighted linear SVM is 
better on such a data set than the simple linear SVM. 
Two separated regularisation parameters C1 and C2 
are used instead of one. The weight of the penalty for 
misclassifying a good-quality product sample is rep-
resented by both parameters C1 and C2. The for-

Tab. 5. Confusion matrix — unweighted models

Confusion matrix
Actual class

Positive Negative

Prediction
Positive 0 0

Negative 38 15735

mula of the weighted support vector machine is 
expressed by Eq. (2).
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where n1 (respective n2) is the number of quality 
products (respectively, defect products) in the train-
ing data. The parameters are then counted as can be 
seen in Eq. (3) and Eq. (4).

and

Of course, there are several approaches to setting the 
optimal weights.

The weights are only required for the algorithm 
training and are no longer used when the trained 
model is employed to predict the class label in the 
encoding process.

3.2.  Weighted linear model

In the case of this study, when only several prod-
ucts with some defects are available in the dataset,  
a much higher weight must be attributed to them. 
Otherwise, the same result would probably be 
received as in previously run basic models, so that all 
good-quality products are correctly detected, but all 
defective products are misclassified. The attempt was 
made to heuristically try the SVM using different 
weights and different core functions. Then, the accu-
racy of the designed models was evaluated. First, the 
model was trained with a linear function. Table 6 
provides the results of six runs of the SVM with 
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mentioned weights of classes. The model was created 
with 100 % accuracy using a 0.0004 weight for good-
quality products and a 0.1618 weight for defective 
products. This model generated 3771 support vectors, 
which is rather many, but despite this, the training 
time was less than ten seconds, which is exceptionally 
good.

Tab. 6. Linear weighted model accuracy

# W(PASS) W(FAIL) Accuracy # of 
vectors Time (s)

1 0.0000159 0.007353 0.9284551 15437 30:59

2 0.0000794 0.036765 0.9409149 8330 16:94

3 0.0001588 0.073530 0.9657025 6284 14:76

4 0.0003177 0.147059 0.9978426 4601 11:12

5 0.0003336 0.154412 0.9999560 4504 10:85

6 0.0003495 0.161765 1.0000000 3771 9:84

Tab. 7. Confusion matrix — the linear weighted model

Confusion matrix

Actual class

Positive Negative

Prediction
Positive 38 0

Negative 0 15735

The following table provides a confusion matrix 
of the resulting compiled model (Table 7). It demon-
strates that no product was misclassified using this 
model.

Even though an optimal model was already 
found, weights were tuned for models with other 
functions to investigate whether it was possible to 
achieve a 100 % correct classification of the product 
quality with other models.

3.3. Weighted polynomial model

Different weights were tried with various param-
eter degree settings for a model using a polynomial 
function. The best-created model generated only 108 
support vectors, and also, the training time was very 
short. However, as Table 8 demonstrates, the accuracy 
of this model was not sufficient compared to the pre-
viously mentioned model. 

Tab. 8. Polynomial weighted model accuracy

# Dg. W(PASS) W(FAIL) Accuracy # of vec-
tors T(s)

1 3 0.000350 0.161765 0.99943 1354 4:49

2 5 0.000350 0.161765 0.99982 260 1:83

3 6 0.000350 0.161765 0.99991 99 0:92

4 7 0.000350 0.161765 0.99978 61 1:15

5 6 0.000318 0.147059 0.99994 108 0:96

6 6 0.000477 0.220588 0.99981 73 1:08

7 4 0.000477 0.220588 0.99987 491 2:12

Table 9 summarises the confusion matrix of the 
best performed weighted polynomial model. Only 
one product was misclassified using this model and 
was incorrectly marked as defective even though it 
was of good quality. This is the Type I error. 

Tab. 9. Confusion matrix — the polynomial weighted 
model

Confusion matrix

Actual class

Positive Negative

Prediction
Positive 37 0

Negative 0 15735

3.4. Weighted Radial Basis Model

Results of the WSVM model with a radial basis 
function are summarised in Table 10. This model also 
proved to have better accuracy compared to the 
unweighted models. However, in this case, the tuned 
class weights and the cost parameter achieved accu-
racy that was still slightly worse compared to both 
previously performed weighted models. It should 
also be underlined that the radial basis model shows 
some cost values, not only very high calculation time 
but also a high number of vectors. Generally, the 
lower value of the cost parameter causes the higher 
execution time and number of support vectors, and 
in contrast, the higher cost value shows better perfor-
mance in both mentioned factors and also higher 
accuracy. 
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Tab. 10. Radial basis weighted model accuracy

# W(PASS) W(FAIL) C Acc. # of 
vec. T(s)

1 0.000159 0.073530 0.01 0.99759 43609 406:13

2 0.000159 0.073530 0.1 0.98593 43609 421:92

3 0.003971 1.838235 10 0.99943 753 6:26

4 0.000477 0.220588 0.1 0.98593 42926 424:05

5 0.000874 0.404412 10 0.99537 2093 17:14

6 0.015884 7.352941 0.1 0.99937 5120 40:07

7 0.015884 7.352941 100 0.99981 173 1:82

Tab. 11. Confusion matrix — radial basis weighted model

Confusion matrix
Actual class

Positive Negative

Prediction
Positive 35 0

Negative 3 15735

In Table 11, we can see the confusion matrix of 
the best weighted radial basis model, which achieved 
a 0.9998098 accuracy. Three products were wrongly 
detected as defective, even though they were of good 
quality. Even in this case, it is a first-order error.

3.5. Weighted sigmoid model

The last tuned model uses the sigmoid function. 
Several support vectors were generated for each algo-
rithm run. The classification accuracy in both the 
training and testing data sets was noted. According to 
Table 12, the model’s accuracy was significantly worse 
than in previous models. The best-achieved model 
showed an accuracy of only 74.89 %. The calculation 
time was rather high compared to the polynomial 
and linear weighted models, and the same could be 
said for the number of support vectors. Also, the cost 
parameter did not influence the evaluation factors 
markedly as it was with the radial basis model.

The worst results were achieved by the weighted 
sigmoid model, where 3951 products were incorrectly 
marked as poor quality (Order II error). On the other 
hand, nine products were wrongly classified as good 
quality (Table 13).

Tab. 12. Sigmoid weighted model accuracy

# W(PASS) W(FAIL) C Acc. # of 
vec. T(s)

1 0.003971 1.838235 10 0.748177 11362 138:65

2 0.000080 0.036765 100 0.746846 11590 132:33

3 0.008816 4.080882 100 0.748938 11334 143:06

4 0.015884 7.352941 1 0.747036 11315 134:62

5 0.013501 6.250000 0.1 0.733215 12696 143:03

6 0.162810 75.36765 0.01 0.736385 12475 139:75

Tab. 13. Confusion matrix — sigmoid weighted model

Confusion matrix
Actual class

Positive Negative

Prediction
Positive 35 0

Negative 3 15735

 

4. Discussion of the results

After the analysis of the obtained models and 
testing of the accuracy levels achieved by using differ-
ent kernels, the following conclusions were drawn. 
Fifty models were created and checked according to 
parameters of accuracy, number of vectors and execu-
tion time. To compare the models, the accuracy was 
tested using the confusion matrix and several metrics, 
visualised in Fig. 2.

Type I error was shown by basic unweighted 
models that used not only the linear function but also 
all kernels. Although the accuracy of these models 
was rather high (99.8 %), all of them misclassified all 
the defective products and assigned them wrongly to 
the good-quality class. Since the correct detection of 
defective products was the main goal, the study con-
tinued by including the class weights in the model. 
The weighted models performed significantly better, 
and their comparison according to the different 
indexes can be seen in Fig. 2. Amongst all the models, 
the weighted linear kernel achieved a perfect 100 % of 
recall rate, while other kernels always misclassified 
some of the defective products. All three models 
(weighted linear, weighted polynomial and weighted 
radial) achieved 100 % precision, and interestingly, 
the weighted sigmoid model showed extremely poor 
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performance in this factor (<1 %). Differently from 
other used models, it had a remarkably high “false 
discovery rate”, so this model mainly classified the 
products false positively (the weighted sigmoid 
model inclined to Type I error). In contrast, the 
weighted sigmoid model performed well compared 
to other models in the case of “negative predictive 
value”. Based on the execution time performance and 

the number of supporting vectors, the best model was 
the polynomial weighted model. Unfortunately, this 
model showed worse accuracy than the linear 
weighted model. Consequently, the linear weighted 
model was evaluated as the best because the accuracy 
factor was definitely the most important for the study.

Fig. 3 demonstrates the used process leading to 
the resulting model. As was previously mentioned, 

 

Fig. 1. PCA contribution — the scree plot 
 

 

Fig. 2. Comparison of the weighted models’ accuracy  

  

 

 
Fig. 3. Proposed model process 
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the AOI on the SMT line for PCB mounting was used 
as the starting point from which the source data was 
gathered. The next step was the deletion of the unnec-
essary variables and missing data imputation for data 
preprocessing

Then, the PCA method was used for dimension-
ality reduction, and five final variables were created 
for further analysis. Based on the previous literature 
review, the SVM supervised algorithm was chosen for 
defect detection. Once it was found that the basic 
linear SVM and different kernels did not provide  
a satisfactory accuracy of classification, the addition 
of class weights was attempted. Weighted models 
performed much better. The Linear Weighted Sup-
port Vector Machine (LWSVM) model achieved 100 
% accuracy. Therefore, the result of this study is the 
PCA-LWSVM model suitable for defect PCB detec-
tion implemented after image processing via AOI.

Conclusions

The paper presented different SVM algorithms 
that can be utilised for defective PCB detection on the 
output of the SMT line with AOI. This study aimed to 
investigate the optimal supervised parameters and 
feature representations. In the studied case, the 
weighted SVM model performed better than the lin-
ear SVM and different kernels. The resulting model 
combines the PCA feature extraction method and the 
WSVM classification algorithm. Different weights 
were tuned to find that 0.0003494449 for good quality 
products and 0.1617647059 for defective products 
proved to perform the best. AOI, which was originally 
used for defect detection, misclassified 4.18 % of 
samples and mismarked them as defective, while the 
proposed PCA-LWSVM model successfully classified 
both good-quality and defective products with a 100 
% accuracy.

The main limit of the study can be the assump-
tion that other models with a 100 % accuracy can be 
tuned and achieve even better performance from 
other points of view (the calculation time, weightless 
model, etc.). The weighted polynomial model per-
formed very well and could be the subject of further 
investigation. Moreover, if certain data sets were 
used, the proposed model could be insensitive, and 
this means that different data sets may lead to various 
“suboptimal” models. It should also be mentioned 
that the proposed PCA-LWSVM model is hard to 
visualise. Another limitation is the range of training 
parameters C and Gamma. Higher values of these 

parameters can be used based on the data character-
istics.

The obtained results can be further applied as  
a post-AOI procedure on the PCB automated assem-
bly line. The proposed method helps manufacturers 
efficiently classify and manage defects in an auto-
mated optical inspection system in the surface-mount 
technology (SMT) line. The study is particularly use-
ful for the automation of the quality control process 
since the manual retest of the wrongly classified 
products would be required no more.
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