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utility of the Design of Experiments 

A B S T R A C T
The research aims to emphasise the relevance of the Design of Experiments (DOE) 
technique as a reliable method for ensuring efficient use of statistical methods in 
routine industrial processes.  A case study approach with a deductive strategy was 
used to assess the effectiveness of different DOE methods to achieve the desired 
objectives. Screening, mid-resolution and high-resolution DOE methods helped 
identify, characterise, and optimise an experimental variable against the desired 
output response.  A general framework for effective DOE is provided as part of DOE 
planning, including defining DOE objectives, selection criteria, noise reduction, and 
application across industries. Overall, various DOE models proved successful in 
identifying a complicated relationship between experimental variables and output 
response. However, when ideal DOE models may not be feasible, reducing test run by 
choosing lower resolution DOE or fewer replicates can still provide important insights 
into the experimental variables’ impact on output responses.
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Introduction

Presently, the world is in a state of pandemonium, 
disordered and frenzied, which makes the work of 
scientists and engineers formidable. Evolving new 
products, advancing old models, managing ongoing 

processes, and repairing gadgets are some of the 
many routine technical tasks for engineers. Daily life 
is contingent on engineers’ real-life technical activi-
ties, which are highly complex, multi-staged pro-
cesses. The engineering field is continuously under 
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pressure to re-engineer its process-control mecha-
nisms to keep up with the exponentially increasing 
advancements in new technology to prevent lags in 
the process yield quality. To be a frontrunner and beat 
the business competition, engineers must step up 
from simple solutions to analysing complex interac-
tions stemming from a thousand different factors. 
The success of any complex process is contingent on 
experimental testing, process control, and statistical 
analysis. Unfortunately, training in advanced statisti-
cal techniques is not a regular part of engineering 
qualification in most countries, which raises serious 
questions about the accuracy of the analysis most 
engineers are obliged to perform (Bisgaard, 1991). In 
this context, the Design of Experiments (DOE) is an 
efficient tool for applying statistics to routine experi-
mental manufacturing tasks (Davim, 2016; Lye, 
2005). 

DOE is a toolkit, a set of guidelines that offers 
several statistical tests for managing resolute modifi-
cations to more than one input variable in an engi-
neering process and assessing its impact on the 
resulting outputs (Montgomery, 20017). It is a cost-
effective and time-saving quality improvement tech-
nique for managing and optimising processes across 
various industries. The DOE qualified as a distin-
guished class of its own and was an independent 
toolkit during the twentieth century but is now a part 
of the trendy Six-Sigma package (Brady & Allen, 
2006). This paper emphasises the relevance of the 
DOE technique as a reliable method for ensuring 
efficient use of statistical methods in routine indus-
trial processes. The following sections of the literature 
review present more information on the nature, 
stages, and types of DOE techniques, their benefits 
over the traditional experimental methods, their rel-
evance to the Six-Sigma methodology, the wide 
applications of DOE across various industries, and 
the gaps in its current use. This is followed by results 
from multiple DOE categories across different sectors 
to gain practical insights into the process shared in 
the discussion section of the manuscript.

1. Literature review

1.1. What is DOE? 

 The design of experiments (DOE) technique 
relies on several statistical methods to optimise the 
modelling of various factors and response variables 
simultaneously (Hecht et al., 2016). DOE’s origin date 

back to 1926, whereby Ronald E. Fisher used it to 
systematically eliminate environmental biases from  
a geometrically patterned agricultural field experi-
ment (Fisher, 1926). The principles used in this first 
design construction have emerged as pillars of statis-
tics. Many of his predecessors defined the importance 
of replication in understanding variation, including 
William’s student Gosset. Fisher and his contempo-
raries, such as Stuart Chapin (1950, randomisation) 
and Wald and Tukey (1943 and 1947, respectively, 
blocking), elaborated on DOE applications in many 
other industries. Later in the 21st century, many other 
statisticians, such as Box et al. (1987) and Montgom-
ery (2017), further strengthened the DOE technique’s 
mathematical foundations, providing a reliable plat-
form to engineers and other practitioners. 

The application of DOE models is known to 
benefit a wide range of industries, such as Aviation 
(Yondo et al., 2018; Davis et al., 1996), Service 
(Antony et al., 2020; Setamanit, 2018), Chemical 
Engineering (Yoo, 2020; Durakovic & Torlak, 2017; 
Andersson et al., 1996), Engineering (Schlueter  
& Geyer, 2018), Environment (Okatia et al., 2016; 
Yang & Tsai, 1998), Food Technology (Yu et al., 2018; 
Chen, 1996), Manufacturing (Wesling & Emam-
jomeh, 1994), Materials (Paulo et al., 2017; Bucher & 
Loos, 1994), Medical (Yip et al., 2020; Mager, 1997), 
and Microbiology (Puente-Massaguer et al., 2020). 
Within the field of engineering and science, DOE’s 
applications are frequently visible in the materials 
sector (30 %), mechanical engineering (18%), chemi-
cal engineering (17 %), and the industrial sector (13 
%). 

1.2. Basic principles of Design of Experi-
ments 

Every process, manufacturing or service will 
inevitably experience variation resulting in rejects or 
failures. These variations could stem from different 
testing temperatures or even concentrations, types of 
raw materials, and adjustments of process parameters 
across different testing sessions. Controlling such 
variations is expensive and time-consuming, and 
some processes might be more sensitive than others. 
Thus, the aim is to identify the sources of such manu-
facturing variations and control them by setting 
appropriate process controls, reducing the process 
sensitivity, and improving output quality (Kackar  
& Shoemaker, 2021). To do that, an engineer needs 
three types of information: a) general, measurable 
metrics that may indicate functional characteristics 
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of the final product, b) process engineer also needs 
exact parameters for the process variables so that they 
can manipulate their standard settings, and c) uncon-
trollable external environmental sources of noise, 
such as the factory’s humidity and temperature. Thus, 
the objective is to identify control parameter settings 
that minimise the noise factor effect on functional 
characteristics of the final output. The whole step-by-
step model is a robust design, first discussed by 
Taguchi as a quality control strategy (Antony & Roy, 
1999). The DOE strategy works on a similar model to 
identify the underlying causes of process problems. It 
is a disciplined approach that systematically manipu-
lates settings of the control parameter variables to 
minimise the noise effect on the functional character-
istics of the output (Gardner & Bieker, 2000).

While applying the DOE model in a process, 
engineers may have to deal with two kinds of process 
variables that they need to manipulate for reducing 
noise effects on the final output: quantitative and 
qualitative. Quantitative settings are measurable 
goals, controllable, and usually pre-determined 
across different levels of process settings. The term 
“level” refers to settings or process specifications for  
a factor in an experiment. Technical specifications of  
a particular manufacturing process constitute these 
variables. On the other hand, qualitative variables are 
external, disconnected, and may require many more 
levels than a quantitative factor. Type of supplier, 
characteristics of a catalyst, and the composition of 
raw materials are examples of qualitative factors in  
a manufacturing process. In a standard DOE, an 
engineer performs a pre-determined number of trials 
to assess the effects of different variable levels on an 
outcome variable. 

Three frequently used stage-wise processes in 
experiments to enhance the output efficiency statisti-
cally and significantly and minimise bias are: a) ran-
domisation is an essential building block of statistical 
methods in experimental designs. It is the process of 
randomly assigning factors to testing units to ensure 
an equal probability of each factor’s allocation to any 
one test; b) replication enables an experimenter to 
estimate the experimental error by simple repetition 
of necessary tests; c) blocking further enhances an 
experimental design’s efficiency by grouping homo-
geneous experiments and controlling any extraneous 
variation sources.

In essence, the DOE aims to detect optimum and 
efficient solutions to process problems through sys-
tematic planning, designing, and statistically analys-
ing engineering experiments. The success of an 

industrially designed experiment depends on efficient 
planning, accurate design choice, thorough statistical 
analysis of the data, and collaborative teamwork. 
Traditionally, engineers heavily relied on the one-
factor-at-a-time (OFAT) technique for their experi-
mental needs. The OFAT technique draws on a null 
hypothesis that no difference exists between two set-
tings of a manufacturing process parameter, and it 
sequentially tests all the inherent factors, one at  
a time.

1.3. OFAT vs DOE

The most significant risk of using the OFAT 
technique is its failure to identify the real optimum 
value and ignoring the potential interactions between 
different factors. Another difficulty in using the OFAT 
technique is its inability to separate the process’s 
inherent noise from the actual test improvement. 
Therefore, a viable alternative is the DOE technique, 
enabling simultaneous combinatorial testing of all 
factors in a full factorial design model. If there are “k” 
number of factors and “X” numbers of levels within  
a testing range, then a DOE strategy will allow for 
“Xk” number of experiments (Hecht et al., 2021). This 
strategy produces novel reaction conditions and pro-
vides for the systematic elimination of researcher 
bias. Other noted advantages of DOE over the tradi-
tional OFAT technique (Czitrom, 1999): a) it requires 
fewer resources, such as time, material, and the 
number of experiments for the amount and quality of 
results it produces, b) the estimated effects of each 
factor on the response variables are exact, and it can 
yield information on a larger region of the factor 
space. DOE has proven to offer substantial financial 
benefits by improving a product’s yield and quality by 
its use at three different times in the life of a manufac-
turing process: a) to determine the optimal testing 
conditions in the early days of initiating a process,  
b) to establish the robustness of a methodology for 
formal applications to regulatory agencies, and c) for 
refining existing conditions of already known proce-
dures.

The DOE technique further gains a significant 
edge over OFAT by carrying out multiple testing 
involving several factors and simultaneously assess-
ing their impact on the product yield and quality. The 
DOE technique can also isolate the interdependent 
effects of a combination of factors, if any, by testing 
the results using appropriate statistical methods. The 
most commonly used statistical techniques are analy-
sis of variance (ANOVA), half-normal and contour 
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plots, and response surface methodology. Nowadays, 
statisticians and technical professionals across many 
industries acknowledge the practical utility of DOE 
as an indispensable quality improvement tool. It is 
also a part of one of the most popular business world 
philosophies: the Six-Sigma methodology. 

1.4. Design of Experiments as a key tool 
of Six-Sigma

Six-Sigma is a quality improvement tool that 
consists of a systematic and organised set of scientifi-
cally proven statistical methods for defect reduction 
in a product and carrying out strategic improvements 
in a process thereby improving customer satisfaction. 
The stellar popularity of the Six-Sigma technique as  
a quality improvement methodology relies upon its 
scientifically organised and data-driven statistical 
approach (Hahn, 2005), which has proven to be  
a winning combination time and again. A general 
stepwise sequence of a Six-Sigma practitioner consists 
of five logical stages of Define, Measure, Analyse, 
Improve, and Control, popularly known as DMAIC. 
It starts with delineating the project scope and meas-
urable goals, followed by identifying specific charac-
teristics of the process. The following two stages of 
Measure and Analyse gauge the process attributes for 
an efficient implementation during the Improvement 
phase in a manner that leads to sustainable, long-term 
benefits, monitored under the final Control stage 
(Goh, 2002). The most critical and bulky steps for 
achieving the project’s goals are the Analyse and 
Improve phases, which rely on experimentation, thus 
creating a perfect niche and fit for the DOE technique. 
The various stages of a DOE are further elaborated in 
the next section.

Stage 1. First and foremost, engineers agree on 
the broad aims, specific objectives, and the input and 
output variables for the intended experiments. 
According to Wu and Hamada’s classification system, 
there are three ways of conducting this first stage. The 
first type is the traditional approach and mainly con-
cerns the screening and characterisation stages in a 
process. The second type of DOE referred to as the 
response surface methodology (RSM), is intended to 
understand process behaviour and find the optimal 
performance point (Myers et al., 2004). The third 
type borrows from Taguchi’s principles and focuses 
on detecting those controllable process settings that 
will effectively minimise the variability induced by 
noise factors, known as the robust parameter design 
(RPD) (Robinsson et al., 2003).

Stage 2. The next stage delves into the specifica-
tion of the different levels of the previously selected 
input variables for the manufacturing experiment. 
Often engineers rely on their expert knowledge and 
experience for agreeing on the number of factors and 
their levels during this stage.

Stage 3. A range of experimental design options 
is available for use in a DOE engineering model. The 
most popular (31 %) is Taguchi’s orthogonal matrices, 
consisting of tables to display experiments for specific 
constituents of factors. The next common choice  
(16 %) among manufacturing practitioners is full 
factorial designs that produce an exhaustive list of all 
possible combinations for every single factor and 
their level. Another common (14 %) type of experi-
mental design is fractional factorial, i.e., the design, 
which carefully selects and conducts only fractions of 
the full factorial design experiments. Finally, central 
composite designs (9 %) enhance several factorial 
design experiments with axial and centre points. 
Other less popular designs are Placket-Burmann  
(4 %) and optimal designs (4 %). The Taguchi meth-
od’s higher popularity amongst engineers is partly 
due to its solid statistical base that significantly 
enhances its practicality (Box, 1988; Nair, 1992). 
However, due to a lack of statistical training amongst 
most engineers, manufacturing industries still fail to 
capitalise on the robust methodology and often rely 
on other designs, such as orthogonal matrices, full or 
partial factorial designs. 

Stage 4. After selecting the number of factors, 
their levels, and the number of design options, engi-
neers contemplate and set the number of experiments 
they need. This decision is usually contingent on the 
available budget, access to resources, and the engi-
neers’ expertise combined with the previous variables 
of the type of design and factors.

Stage 5. The final decision relates to a real or 
simulated computer experiment. An actual, tangible 
experimental process using factual data usually 
occurs in a laboratory or manufacturing plant, and  
a simulated option can be through computer soft-
ware. Computer simulated experiments for product 
and process development have recently gained tre-
mendous popularity (Kennett & Steinberg, 2006).  
A simulation is cost-effective as it facilitates simulta-
neous testing of many factors and proves to be espe-
cially useful in case an experiment turns out to be 
defective. 

Gaps in the current research. It is noticeable that 
despite a steep rise in the number of scientific articles 
using the DOE technique, there is a gap in the effec-
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tive use of advanced statistical analyses. For example, 
between 2003 – 2007, there were about six publica-
tions per year, which increased by 145 %, to 14.7 
publications/year for the next five-year period of 
2008 – 2013. However, a significant proportion of 
engineering publications (at least 77 in the last five 
years) suggested low use of advanced statistical tech-
niques. Furthermore, many scientific articles 
excluded relevant details of the pre-experimental 
steps, potentially reducing the educational value of 
the publications. Therefore, the scientific community 
should invest more tremendous efforts in conquering 
the valley between the engineering community and 
the statisticians. One of the ways is to provide a prac-
tical DOE framework with statistics aiding and not 
restricting the process.

This paper aims to provide the general frame-
work with critical consideration to improve the 
effectiveness of the DOE in industrial applications. 
Furthermore, as the same personnel led the DOEs, it 
removed user variation and evaluated different DOEs 
objectively across industries. This is a novel idea as all 
the previous comparative DOE-related research pub-
lications have been independent or restricted to  
a single sector. 

2. Research methods

We present a comparative evaluation of the util-
ity of three distinct categories of DOE, conducted 
across a wide range of industries. These three types 
are also the most common forms of a DOE design:
• Screening,
• Mid-Level Resolution, and 
• High Resolution or Response Surface Designs. 

Many factors influence the creation of DOE, and 
hence the framework below was adopted and recom-
mended to increase its effectiveness.

1. Define the problem. Explain the issue to be 
resolved or understood using the experimental 
designs.

2. Establish the objective. State the purpose of 
the DOE, i.e., to identify significant input variables, 
identify an interaction between variables, or charac-
terise and optimise them.

3. Select the output. Decide how to measure the 
performance.

4. Select the input factors and their levels. Use 
the CNX (Controlled Noise eXperimental) diagram 
(Fig. 2) to help select experimental input factors. 
Controlled input factors remain constant and experi-

mental factors are changed as per DOE to evaluate 
their impact on the output. The effect of noise factors 
should be minimised during the DOE.

5. Select the experimental design & sample 
size. Below are some of the factors that should be 
considered while selecting the DOE.
• Aims and objectives of the experiment. An essen-

tial consideration in selecting a DOE is whether 
the intention is to use it to identify significant 
input variables only or characterise and optimise 
input variables.

• The number of input variables. Typically, in the 
case of input factors higher than six, a screening 
design is more appropriate; for a design involving 
less than six input variables, industries prefer  
a mid-level resolution design; and for processes 
inputting between two and four factors, the full 
factorial design is the optimal choice.

• The number of levels and replicates. The number 
of input factor levels helps characterise its rela-
tionship with the output, especially a non-linear 
relationship. Replicates can be used.

• Calculate pure error derived from the measure-
ments. Ideally, the more the input factor levels 
and replicates, the better it is for DOE. Still, con-
sidering the DOE practicality, it may not always 
be possible to opt for the ideal design.

• Randomisation protects against unknown or 
uncontrolled input variables.
6. Collect the data: Once the test plan is cre-

ated, perform the tests and collect the response/out-
put data.

7. Analyse the data. Standard statistical soft-
ware like Minitab can be used to analyse the DOE 
data in detail, helping in identifying, characterising 
and optimising significant input factors and their 
interactions. 

8. Draw conclusions. Based on the analysis, 
make conclusions to help with the design and devel-
opment of permanent corrective action.

9. Evaluate whether all objectives were achieved 
or not. If not, a follow-up DOE might be required.

Following the above framework, vital outcomes 
from various DOEs were present. They were con-
ducted across different industries under three broad 
categories: Screening, Mid-Resolution and High-
Resolution Designs. The utility of different DOEs was 
analysed based on their effectiveness and efficiency in 
meeting the desired objectives. The same personnel 
led these experimental designs eliminating the noise 
from operator variation due to skillset and methodol-
ogy. 
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3. Research results 

3.1. Screening designs

A screening DOE is used to gain insights between 
experimental inputs and outputs in cases when many 
experimental variables are present. To elucidate cur-
rent research objectives, a couple of examples were 
taken from electronics wafer manufacturing and the 
wireless communication industry.

3.1.1. Poor Li-Fi connection speed

An L36 (2^3, 3^3) Taguchi DOE was used in  
a warehouse logistic company to identify factors 
affecting connection speed between two devices 
communicating wirelessly via Light Fidelity (Li-Fi) 
technology. There were six experimental factors with 
multi-level input values. The example presented here 
was one of many screening DOEs conducted to gain 
insight into a large pool of potential Key Process 
Input Variables (KPIVs). Higher-resolution DOE 
would have required thrice the experimental runs, 
which was not practical considering the experiment’s 
effort. The process’s knowledge helped select a Tagu-
chi design that evaluated potentially significant fac-
tors and interactions among the factors. The main 

 
 

 
Fig. 1. Main effects plot for mean connection speed 

 
 

 
Fig. 2. CNX diagram for DOE 

 
 

 
Fig. 3. Main effect plots for means 
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effects plot and response ranking for the mean con-
nection speed is shown in Fig. 1 and Table 1, respec-
tively.

Taguchi DOE was successful in identifying the 
key factors affecting the connection speed. The opti-
mum settings, calculated using Minitab’s predict 
Taguchi results, yielded low connection speed when 
used during confirmation testing. For this reason, we 
recommend a follow-up using a screening DOE with 
a high resolution fractional or full factorial DOE. 
Results from the full factorial DOE are discussed 
below. We suggest that the top four factors from 
Taguchi DOE should be statistically significant in 
determining mean connection speed, but characteri-
sation plots are likely to be different.

3.1.2. Electronics wafer manufacturing

It is an industry where conducting experimental 
design is very valuable but also very expensive. Each 
test run costs approx. GBP 500, which made it critical 
to keep the experimental runs as low as possible. Even 
before considering DOE, a detailed analysis of the 
existing data was conducted to reduce potential 
KPIVs from 40 to nine. However, nine was still too 
high to conduct a high resolution or more than 2-level 
DOE. For Taguchi or any DOE to be successful, care-

Tab. 1. Response for mean connection speed

Level Beacon AGV. Vibration X Pos Y Pos Z Pos

1 6.634 6.088 6.632 6.243 6.437 5.951

2 6.642 7.190 6.646 7.329 6.553 7.378

3 6.344 6.927 6.587

Delta 0.008 1.102 0.014 1.087 0.490 1.426

Rank 6 2 5 3 4 1
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ful selection of KPIVs levels, managing and control-
ling the noise variables are critical. A reasonable 
understanding of the KPIVs through the Six-Sigma 
methodology helped create a detailed CNX diagram 
shown in Fig. 2. 

We used a Taguchi L12 design to rank the input 
factors in the order of their impact on TTV. Taguchi 
L12 implied that by performing 12 lapping batches, 
nine experimental factors at two different values were 
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Level Sun Gear 
Ratio

Bottom Plate 
Speed

Exhaust 
Timer

Acceleration 
Timer

Plate 
Temp.

Recycle 
Slurry Status

Active agent 
concentration

Slurry 
Temp.

Slurry 
Mixing Time

1 1.2893 1.0338 1.0053 1.0092 1.1997 0.9940 1.0120 0.9957 1.0062
2 0.7123 0.9678 0.9963 0.9925 0.8020 1.0077 0.9897 1.0060 0.9955

Delta 0.5770 0.0660 0.0090 0.0167 0.3977 0.0137 0.0223 0.0103 0.0107
Rank 1 3 9 5 2 6 4 8 7

Tab. 2. Response for Means

evaluated for their effects on TTV, as shown in Fig. 3 
and Table 2.

From Taguchi DOE, the top two ranking factors 
(the sun gear ratio and plate temperature) seemed to 
impact TTV significantly. Moreover, the bottom plate 
speed, with a ranking of three, did not appear to be 
significant but was still included in the further analy-
sis; because Taguchi is only a screening DOE, so  
a follow-up with a more comprehensive DOE to 
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confirm the results of screening DOE is usually rec-
ommended.

3.2. Mid-Resolution Designs 

Mid-Resolution Designs are an optimal choice 
when the interaction between KPIVs is significant to 
the theoretical model while keeping the experimental 
runs to a minimum. In this section, a couple of exam-
ples are presented from the same industry.

3.2.1. The plumbing industry

This set of fractional factorial experimental 
designs was conducted in a UK-based, global plumb-
ing company renowned for its bathroom products.  
A soon-to-be-launched mixer shower product was 
demonstrating a high reject rate for leak failures. The 
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Tab. 3. Analysis of variance and model summary 

SOURCE DF ADJ SS. ADJ MS F-VALUE P-VALUE 

Model 17 236.700 13.9235 26.52 0.037 

  Linear 6 116.200 19.3667 36.89 0.027 

    Housing 1 72.250 72.2500 137.62 0.007 

    Cover 1 0.450 0.4500 0.86 0.452 

    Energy 1 12.250 12.2500 23.33 0.040 

    Working Pressure 1 9.000 9.0000 17.14 0.054 

    Standstill Delay 1 6.250 6.2500 11.90 0.075 

    Amplitude 1 16.000 16.0000 30.48 0.031 

  2-Way Interactions 8 84.250 10.5312 20.06 0.048 

    Housing*Cover 1 0.250 0.2500 0.48 0.561 

    Housing*Energy 1 25.000 25.0000 47.62 0.020 

    Housing*Working Pressure 1 0.250 0.2500 0.48 0.561 

    Housing*Standstill Delay 1 25.000 25.0000 47.62 0.020 

    Housing*Amplitude 1 20.250 20.2500 38.57 0.025 

    Cover*Working Pressure 1 0.250 0.2500 0.48 0.561 

    Cover*Amplitude 1 12.250 12.2500 23.33 0.040 

    Energy*Standstill Delay 1 0.000 0.0000 0.00 1.000 

  3-Way Interactions 2 90.450 45.2250 86.14 0.011 

    Housing*Cover*Amplitude 1 36.000 36.0000 68.57 0.014 

    Cover*Energy*Standstill Delay 1 54.450 54.4500 103.71 0.010 

  Curvature 1 0.000 0.0000 0.00 1.000 

Error 2 1.050 0.5250       

Total 19 237.750          

S R-sq R-sq(adj) R-sq(pred) 

0.724569 99.56% 95.80% 24.06% 
 

  

Level Sun Gear 
Ratio

Bottom Plate 
Speed

Exhaust 
Timer

Acceleration 
Timer

Plate 
Temp.

Recycle 
Slurry Status

Active agent 
concentration

Slurry 
Temp.

Slurry 
Mixing Time

1 1.2893 1.0338 1.0053 1.0092 1.1997 0.9940 1.0120 0.9957 1.0062
2 0.7123 0.9678 0.9963 0.9925 0.8020 1.0077 0.9897 1.0060 0.9955

Delta 0.5770 0.0660 0.0090 0.0167 0.3977 0.0137 0.0223 0.0103 0.0107
Rank 1 3 9 5 2 6 4 8 7

product consisted of 12 sub-assemblies and compo-
nents that went through five assembly stations and 
two leak tests at different assembly stages. At the final 
leak stage, approx. 12 % of the product was rejected 
for a high leak rate resulting in a high financial loss 
due to scrap and rework. After the initial root cause 
analysis, the team identified six potential factors with 
possible interactions. A quarter-factorial of two levels 
with resolution IV and a 20 test run design was 
deemed most suitable for the purpose. Centre points 
were also added to identify the possible non-linearity 
of the KPIVs. The output from the variance analysis 
and model summary is presented in Table 3, and the 
Pareto chart is shown in Fig. 4.

The response data were categorised based on 
visual inspection, which was an interesting attempt to 
evaluate the effectiveness of DOE against ordinal 
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response data. An excellent R-sq value suggested an 
ideal regression model. Significant KPIVs were iden-
tified from the model, and an optimum setting was 
established using the Minitab software. Confirmation 
testing validated the theoretical model.

3.2.2. Robustness of the optimum settings 

The optimum settings derived in the previous 
section need to work for different batches of three key 
components, which are housing, cover, and base. 
Although visual check (Attribute Data) indicates 
weld quality, burst strength (continuous data) is the 
correct measure that required destructive testing. 
Considering the total loss of a part due to destructive 
testing, a half-factorial, two-level, and resolution III 
was conducted with these three factors. The variance 
analysis results are shown in Table 4 and the Pareto 
chart in Fig. 5.

We obtained excellent experimental design 
results with a 100 % R-sq value and no factors exert-
ing a statistically significant burst strength impact. 
However, further analysis revealed that the DOE 
could not calculate p-value and R-sq (adj), suggesting 
some missing data links. Visual inspection of the 
weld further revealed quality issues with certain 
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AGV*Y Pos 2.860 1.430 0.147 9.74 0.000 1.00 
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parts. As this was a compliance and safety issue, a full 
factorial DOE technique was performed with one 
replicate using the same input variables. The results 
are presented in section 3.3.1. It was also found that 
although it was a fractional factorial DOE, the resolu-
tion was only III, which had put it into the screening 
DOE category and hence less useful in characterising 
the factors.

3.3. High-Resolution Full factorial 
designs

High-Resolution Full factorial designs are com-
plete models with quadratic interactions for identifi-
cation, characterisation, and optimisation of KPIVs. 

This is the follow up full factorial DOE technique 
to the Taguchi screening discussed earlier in section 
3.1.1. A four-factor and two-level full factorial DOE 
was performed with centre points using experimental 
factors identified from the screening DOE. The main 
effects plot and model summary generated using 
Minitab selecting stepwise options are shown in Fig. 
6 and Table 5.

All four experimental variables and a two-level 
interaction were found to be statistically significant. 
A robust regression model, R-sq (Adj) of 90.61 %, was 
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achieved with a combination of four factors tested 
during the experiment suggesting that most of the 
process variation can be controlled via these factors. 
With the help of Minitab’s Response Optimiser, opti-
mum settings were identified, including tolerances, 
for all the factors. It helped develop a robust solution 
that can deal with manufacturing, installation, and 
operational variations between the two AGVs with-
out significantly affecting connection speed. It is 
essential to highlight that some of the obtained set-
tings differed from what was identified during the 
screening phase, further highlighting the potential 
shortcomings of screening DOE. Pilot testing was 
conducted with the new set-up using single Li-Fi, but 
multiple AGVs. Achieved process capability (Cpk) of 
3.18 was much higher than the industry standard of 
1.67, which also confirmed the solution’s robustness.

This is the follow up full factorial DOE to the 
Taguchi screening discussed earlier in section 3.1.2. 
Three-factor and two-level full factorial DOE with 
centre points was designed to characterise and opti-
mise the three experimental factors. The DOE suc-
cessfully identified statistically significant factors and 
the effect of their interactions on the output (Fig. 7). 
The factors above the red line were statistically sig-
nificant, and the factors below were non-significant.

The main effects plot shown in Fig. 8 indicated 
that an increase in the sun gear ratio, plate tempera-
ture and the bottom plate speed resulted in reduced 
TTV. Further, as centre points (marked red) for all 
the three factors were not on the line, the impact of 
these factors on TTV was non-linear. For example, 
the plate temperature increase to 24 °C did not reduce 
TTV; however, a plate temperature closer to 30 °C 
was most likely to reduce the TTV reject rate.

Results from Minitab’s Response Optimiser are 
shown in Fig. 9, suggesting that to achieve the mini-
mum TTV (0.462), inputs should be set to the param-
eters highlighted in red.

The theoretical predictive DOE model was vali-
dated via a confirmation run using the recommended 
input values that yielded similar results to the DOE 
model.

This is the follow up full factorial DOE to the 
fractional factorial DOE discussed earlier in the 
plumbing industry section 3.2.2. A three-factor and 
two-level full factorial DOE with a replicate was 
conducted. The results of the Pareto chart of the 
standardised effects are shown in Fig. 10. 

In contrast to fractional factorial DOE, the full 
factorial DOE was able to identify “housing” as  
a statistically significant factor. The same full facto-
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rial DOE model without replicates was analysed  
as an academic exercise, presented in Fig. 11. It can 
be seen that without replicates, even the full factorial 
DOE model failed to detect any significant factors. 
Investigating it further revealed that high variation 
in the burst strength measurements made it chal-
lenging to identify process shifts. In such cases, it  
is recommended to have as many replicates as pos-
sible.
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Based on the insights gained from the DOE, fur-
ther investigation into two types of housing revealed 
that poor roundness of the low performing housing 
was responsible for reduced burst strength. Confir-
mation testing and the pilot study conducted using 
suitable housing provided similar results to the theo-
retical DOE model. Further data collected after the 
resolution of housing roundness also provided excel-
lent results with no failures.
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3.4. Summary of various DOE results

Comparison between multiple DOE techniques 
and their utility is summarised in Table 6.

Tab. 6. Comparative summary of DOE results

DOE Type Input 
Factors

Effort / 
Cost

Identifying KPIV & 
Interactions

Characterising 
KPIV 

 & Interactions

Optimising KPIV 
 & Interactions Application

Screening 6,9 Low KPIVs only Not reliable Not reliable

At the start of devel-
opment or problem 
solving, where the 

number of potential 
input variables is 

high

Mid-resolu-
tion 3,6 Medium KPIV & some of 

2-way interactions

KPIV & some of the 
2-way interactions 

with low error
Not reliable

The number of 
potential input 

variables is <9 with 
no 4-way or higher 

interactions

High-resolu-
tion 3,4 High KPIV and up to all 

interactions

KPIV & up to all the 
interactions with 

very low error
Reliable

This should be the 
preferred choice as 
long as it is practical
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4. Discussion of the results

In line with previous research (Ilzarbe et al., 
2008; Antony et al., 1999; Hecht et al., 2016), various 
DOE models were highly influential in attaining the 
experiments’ objectives. This research study found 
that defining the experimental designs’ goals as part 
of DOE planning is vital. For example, a) Is DOE 
used for KPIVs identification only or to characterise 
and optimise KPIVs as well? b) Is the interaction 
between KPIVs significant? c) To what level must the 
KPIVs be characterised? However, DOE objectives 
may change if many tests are not feasible due to  
a large set of experimental factors and their levels. 
Every factor or level added in the full factorial design 
increases test runs significantly, calculated by FL 
where F is the number of factors, and L is the number 
of levels. For example, a 2-level and 3-factor will 
require 8 test runs compared to 27 test runs for  
a 3-level and 3-factor or 16-factors for a 2-level and 
4-factor design. Similarly, a fraction factorial or 
screening DOE will use half or less than a full facto-
rial design. As shown in Section 3, a less comprehen-
sive DOE model must be chosen to achieve the initial 
objectives set out for experiments in such cases.

Consistent with previous research studies (Zheng 
et al., 2013; Robinson et al., 2003; Box, 1988; Box et 
al., 1988; Nair, 1992), it was found that screening 
DOEs were highly effective in identifying KPIVs 
while managing a high number of variables. In Sec-
tion 3.1, both screening DOEs managed to identify 
statistically significant KPIVs, which remained the 
same even when conducted with higher resolution 
DOE. However, it was argued that screening DOE 
effectiveness was highly dependent on the user’s 
skillset to choose the correct levels and screening 
model. Previous studies have highlighted the ineffec-
tiveness of screening DOE in characterising the 
KPIVs. This paper confirmed this conclusion as the 
optimum setting derived from screening DOEs in 
both cases failed to give desired results during confir-
mation testing. As the name suggests, screening DOE 
can be good for identifying KPIVs, but not that useful 
for characterising and optimising them.

It is well established that the Design of Experi-
ments is a powerful and versatile analytical tool that 
works across industries with different data types (e.g., 
Durakovic, 2017; Hecht et al., 2016; Ilzarbe et al., 
2008). This research further elucidates that the DOE 
works with continuous variable data and ordinal 
response data. In Section 3.2.1, the response variable 

was a visual inspection which categorised ultrasonic 
weld quality. However, as a general rule, before any 
data analysis, data validation should be performed. In 
this case, a Measurement System Analysis (MSA) was 
performed using the agreement analysis to identify 
reproducibility and repeatability error. In both cases, 
the agreement between and within visual inspectors 
was more remarkable than 90 %. The case studies 
presented in Sections 3.2.2 and 3.3 also stresses the 
relevance of MSAs. High variation in the burst 
strength measurement made it difficult for various 
DOEs to create an accurate regression model. In line 
with previous research studies (Sukhthomya & Tan-
nock, 2005), DOEs were found to remain effective 
when an independent variable was discrete or cate-
gorical. All the DOE cases discussed in this manu-
script had either categorical or discrete data as an 
independent variable.

It is essential when performing a DOE that the 
noise factors are identified and minimised as much as 
possible (Kackar & Shoemaker, 2021; Gremyr et al., 
2003). However, at times maybe inadvertently, noise 
can be introduced in the DOE. Previous research 
studies recommended randomising experimental 
runs to reduce the impact of noise factors on the DOE 
model (Hecht et al., 2016; Antony, 2014; Box, 1990). 
In Sections 3.1.2 & 3.3, a couple of factors (the slurry 
mixing time and the plate temperature) are time-
dependent, meaning the longer a machine runs, the 
better they become. If a similar DOE without these 
experimental variables and a randomised test was 
administered, the first few test runs would have 
always resulted in a poor TTV regardless of the test 
set-up. Another way of reducing the impact of noise 
factors is by repeating test runs (Hecht et al., 2016; 
Antony, 2014). For example, in section 3.3, a meas-
urement system variation for the process was accept-
able (% Tolerance Variation: 19.88), but it was still too 
high for the DOE to accurately identify and charac-
terise independent variables. In this case, replicates 
helped to form correct modelling.

In line with previous studies (Weissman  
& Anderson, 2015), it is highly recommended to 
undertake confirmation testing after any DOE. The 
larger the sample size, with normal process variation, 
the better it is for validation. With a couple of case 
studies presented in Sections 3.1.1 and 3.2.2, it was 
found that the characterisation of independent vari-
ables was way off the mark, and optimum settings did 
not give the desired results. Confirmation testing 
becomes even more critical when the understanding 
of a process is limited. 
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The availability of advanced statistical software 
has made the DOE application more accessible with-
out great statistical expertise for users (Durakovic, 
2017; Hibbert, 2012). Also, the Minitab software was 
found to be extremely helpful in selecting and analys-
ing various DOEs. The stepwise function was repeat-
edly used to generate accurate regression models. The 
Response Optimiser was also very helpful in identify-
ing optimum settings, including tolerances for the 
independent variable, especially significant interac-
tions were present.

 

Conclusions

The current study aimed to emphasise the rele-
vance of the DOE technique as a reliable method for 
ensuring efficient use of statistical methods in routine 
industrial processes. The cases presented in the man-
uscript led to the conclusion that DOE effectively 
achieves the desired objectives. The DOE model 
should be selected based on the goals, i.e., screening, 
identifying, characterising or optimising KPIVs and 
their interactions. DOE is a powerful and versatile 
analytical tool that works across industries with dif-
ferent data types. However, if noise factors are not 
appropriately managed, it can easily result in inaccu-
rate regression models. Randomisation and replicates 
are a couple of acceptable practices to reduce noise. 
Further, to avoid following the incorrect DOE con-
clusions, confirmation testing after any DOE is highly 
recommended.

Overall, various DOE models proved successful 
in identifying a complicated relationship between 
experimental variables and output. The different 
cases presented in the research study were conducted 
by the same person with a decent knowledge of the 
experimental product or process. It will, therefore, be 
useful for future research to try evaluating the impact 
of personnel and lack of product or process knowl-
edge on DOE effectiveness.
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